Tetraspar
Windkraftpioniere testen schwimmendes Fundament für Offshore-Windturbinen
24. Juni 2019

Ab 2020 soll vor der Küste Norwegens ein schwimmendes Fundament für Offshore Windkraftanlagen getestet werden. In dem Pilotprojekt arbeiten innogy, Shell und Stiesdal Offshore Technologies A/S (SOT) zusammen, um das erhebliche Kostensenkungspotenzial für schwimmende Windturbinen zu erschließen.
Dynamische Stabilitätstests an Offshore-Fundament angelaufen
Die Partner investieren zusammen 18 Millionen Euro. Im Pilotprojekt wird eine getriebelose 3,6-MW-Turbine von Siemens Gamesa Renewable Energy eingesetzt. Das modulare Konzept stammt vom dänischen Windkraftpionier Henrik Stiesdal. Es nutzt eine Stahlrohr-Tragstruktur mit darunter hängendem Kiel.
Dabei wird erwartet, dass die Konstruktion deutliche Wettbewerbsvorteile gegenüber bestehenden Konzepten für schwimmende Windturbinen bieten kann. Vorteile bieten sich aufgrund eines effizienteren Fertigungs-, Montage- und Installationsprozesses sowie geringerer Materialkosten.
Das Pilotprojekt wird rund zehn Kilometer vor der Küste am Teststandort des Marine Energy Test Centre (Metcentre) nahe Stavanger in Norwegen in Wassertiefen von 200 Metern installiert. „Schwimmende Fundamente für Windkraftanlagen sehen wir als eine vielversprechende Technologie, die das Gesicht der Offshore-Windindustrie in den nächsten zehn Jahren verändern könnte,“ erläutert James Cotter (Projektmanager bei Shell) das Vorhaben.
„Wir möchten diesen Wandel forcieren, indem wir unsere Offshore-Expertise mit unseren Partnern teilen, um gemeinsam innovative Lösungen wie TetraSpar voranzutreiben.“ Bereits seit vergangenem Dezember laufen dynamische Stabilitätstests mit einem maßstabsgetreuen Modell im Wellen-Wind-Kanal der University of Maine/USA und im Wellentank von FORCE in Lyngby/Dänemark.
In diesem Jahr sollen die Bauteile für den großen schwimmenden Prototypen in Give/Dänemark gefertigt werden. Die Komponenten werden in den Hafen von Grenaa transportiert, wo sie montiert werden. Anschließend wird die Fundamentstruktur zu Wasser gelassen.
Mithilfe eines Krans wird die Turbine von der Kaikante aus auf dem schwimmenden Fundament befestigt. Von dort aus wird die Fundamentstruktur mit der Turbine zum Teststandort auf hoher See geschleppt, mit drei Ankerketten am Meeresboden verankert und über ein Kabel mit dem Stromnetz verbunden.
Bildquelle: Stiesdal Offshore Technologies A/S
Shellmet – Schutzhelm aus Muschelschalen
3. März 2023
Koushi Chemical Industry hat in Kooperation mit der Universität Osaka den…
Batteriegehäuse aus Naturfaser-Organoblechen
7. Juli 2022
Am Fraunhofer LBF wurden in Kooperation mit der Ansmann AG im Forschungsprojekt…
Räucherrakete mit Formgedächtnislegierung
23. Dezember 2022
Pünktlich zum Weihnachtsfest stellt das Fraunhofer IWU eine Räucherrakete mit…
Hybride Produktion mit additiven Verfahren
7. November 2022
Anlässlich der Formnext 2022 in Frankfurt präsentiert das Fraunhofer IPT die…
Bessere Luftqualität dank UV-C Technologie
26. Oktober 2022
Fraunhofer Forscher vom IBP haben den Einsatz von UV-C Licht zur Desinfektion…
UILA Elektro-Lastenrad
24. November 2022
Anlässlich der formnext hat das Innovationsstudio nFrontier mit Partnern unter…
Futurecraft Strung Laufschuh
14. März 2021
Beim Futurecraft Strung kombiniert Adidas additive Fertigungsverfahren mit…
Dekarbonisierung durch Wasserstoff im Hochofen
28. Februar 2023
thyssenkrupp Steel vergibt Milliardenauftrag für den Bau einer…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…