Pflanzenheizung aus dem Gewächshaus
Wärme mit Schilf und Salzlake
23. April 2012
Die Energiepolitik befindet sich im Umbruch. Zahlreiche Beschlüsse fordern einen Umstieg auf erneuerbare Quelle und die Abkehr von fossilen Energieträgern. Dies ist vor allem für Länder interessant, deren klimatischen und geographischen Bedingungen eine hohe Anzahl von Sonnentagen, viel Wind oder Potenziale zur Ausnutzung von Wasserkraft ermöglichen. So kann das Ergebnis des Hessischen Energiegipfels aus dem letzten Jahr als mutiger Schritt betrachtet werden, die Wende hin zu einer vollständigen Versorgung mit Strom und Wärme für private Haushalte und die industrielle Produktion bis 2050 zu schaffen. Klimaunabhängige Energiesysteme sind also erforderlich, die uns von der Abhängigkeit von fossilen Energieträgern befreien.
Hygroskopische Salzlake der Luft
In diesem Zusammenhang ist Forschern der TU Berlin jüngst die Entwicklung eines neuen Energiesystems gelungen, das durch Kopplung an ein Gewächshaus wesentlich weniger Sonnenstrahlung für die Energieproduktion benötigt als konventionelle Kollektoren und unabhängig von Jahreszeiten betrieben werden kann. Zentrales Element des Systems ist ein Absorber in Form eines schwarzen Kunststoffkörpers, der bei einem Volumen von einem Kubikmeter eine erstaunlich große Oberfläche von achtzig Quadratmetern aufweist.
In dem Gewächshaus, in dem Schilf kultiviert wird (auch Bambus möglich), wird Abwasser eingeleitet, das bei niedrigen Temperaturen verdunstet. Während der Leitung der hochfeuchten Warmluft durch den Absorber entzieht eine hygroskopische Salzlake der Luft dann Feuchtigkeit. Beim Phasenwechsel von Dampf zu Wasser entsteht Wärmeenergie, die die Sole aus Magnesium-Chlorid auf eine Temperatur von 45 °C erwärmt. Die warme Salzlösung kann anschließend zu Heizzwecken genutzt oder als Energiespeicher dienen.
Nach Aussagen des Entwicklers Dr. Martin Buchholz lässt sich das System auch überall dort einsetzen, wo Dampf als Nebenprodukt anfällt oder ein Medium getrocknet werden muss. Potenziale sieht er vor allem für Schwimmbäder und Saunas oder für die industrielle Produktion von Kartonagen, Holzwerkstoffen oder Milchpulver.
Bildquelle: TU Berlin, Dr. Martin Buchholz
Snowboard aus Hanf
4. November 2024
Silbaerg hat im Durobast-Projekt ein Snowboard aus Hanffasern und biobasiertem…
Tellur-freie thermoelektrische Generatoren
24. Mai 2024
Am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden wurde ein…
Möbel für die additive Massenproduktion
10. August 2024
Die schwedische Interior-Agentur "Industrial Poetry" untersucht in ihrem…
Transluzentes 3D-Druckmaterial
17. Juni 2024
Mit einem 3D-Druckverfahren ist es am Fraunhofer IPA gelungen, hinterleuchtete…
Hybridelektrisches Fliegen
14. September 2024
Unter Federführung von Rolls Royce Deutschland haben mehrere…
Emotionalität humanoider Roboter
17. Juli 2024
In seiner Masterthesis hat Niko Alber eine Installation eines lebensgroßen…
Perowskit-Solarzellen der nächsten Generation
7. August 2024
Im EU-Forschungsprojekt PEARL erfolgt eine Weiterentwicklung von…
Smart Ring
27. Februar 2024
Durch Miniaturisierung von Sensorik und Antenne in einen Ring haben Start-Ups…