Selbstheilende Materialien unter Einfluss von UV-Licht
Neue Forschungsergebnisse für außergewöhnliche Materialintelligenz
25. April 2011

Autolacke, die Kratzer selber verschließen können, oder Bootsrümpfe, die in der Lage sind, Risse eigenständig zu füllen. Nicht zuletzt beim Flugzeug, in einer sicherheitsrelevanten Anwendung also, werden die Potenziale selbstheilender Materialien zur Verbesserung der Funktionsfähigkeit eines Werkstoffs mehr als offensichtlich.
Selbstheilende Polymerbeschichtung mit eingelagerten Metallionen
Nachdem die Wissenschaft in den letzten Jahren einige sehr erfolgversprechende Lösungen für selbstheilende Systeme präsentiert hat, warten Anfang 2011 zwei Forschergruppen mit Neuerungen auf, deren heilende Wirkung unter Einfluss von UV-Licht ausgelöst wird.
So haben Wissenschaftler aus den USA und der Schweiz eine Polymerbeschichtung mit eingelagerten Metallionen aus Zink oder Lanthan entwickelt. Einfallendes UV-Licht wird von dem metallischen Anteil der so genannten metallosupramolekularen Polymere angezogen.
Die Beschichtung heizt sich infolgedessen binnen 30 Sekunden auf über 200 Grad auf. Es kommt zum Anschmelzen und Verschließen der Kratzer. Auf diese Weise könnten beispielsweise Karosseriebauteile durch lokale Bestrahlung repariert werden, ohne diese auszubauen und aufwändig neu zu lackieren.
Eine amerikanisch-japanische Forschergruppe berichtet von einer anderen Entwicklung, bei der sich erstmals gekappte kovalente Bindungen wiederholt neu miteinander verknüpfen. So kann sich ein Kunststoff ohne Qualitätsverlust permanent erneuern. Die Grundlage bildet eine Trithiocarbonat-Quervernetzung, die aus drei Schwefelatomen und einem Kohlenstoffatom besteht.
Unter Einfluss von UV-Licht strukturiert sich die Gruppe um, eine Kohlenstoff-Schwefel-Bindung wird aufgebrochen. Es entstehen hochreaktive Moleküle mit ungepaarten Elektronen, die wiederum neue Bindungen mit anderen Trithiocarbonat-Gruppen eingehen.
Der beschriebene Effekt der Neuorganisation von Kohlenstoff-Schwefel-Bindungen sei so stark, dass selbst geschredderte Kunststoffproben durch einfaches Zusammenpressen unter UV-Licht wieder zusammenwachsen würden, so die Wissenschaftler.
Forschungsbericht in Nature: www.nature.com/articles/nature09963
Bildquelle: Adolphe Merkle Institute
Shellmet – Schutzhelm aus Muschelschalen
3. März 2023
Koushi Chemical Industry hat in Kooperation mit der Universität Osaka den…
Batteriegehäuse aus Naturfaser-Organoblechen
7. Juli 2022
Am Fraunhofer LBF wurden in Kooperation mit der Ansmann AG im Forschungsprojekt…
Räucherrakete mit Formgedächtnislegierung
23. Dezember 2022
Pünktlich zum Weihnachtsfest stellt das Fraunhofer IWU eine Räucherrakete mit…
Hybride Produktion mit additiven Verfahren
7. November 2022
Anlässlich der Formnext 2022 in Frankfurt präsentiert das Fraunhofer IPT die…
Bessere Luftqualität dank UV-C Technologie
26. Oktober 2022
Fraunhofer Forscher vom IBP haben den Einsatz von UV-C Licht zur Desinfektion…
UILA Elektro-Lastenrad
24. November 2022
Anlässlich der formnext hat das Innovationsstudio nFrontier mit Partnern unter…
Futurecraft Strung Laufschuh
14. März 2021
Beim Futurecraft Strung kombiniert Adidas additive Fertigungsverfahren mit…
Dekarbonisierung durch Wasserstoff im Hochofen
28. Februar 2023
thyssenkrupp Steel vergibt Milliardenauftrag für den Bau einer…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…