
Carbon Capture mit Magnesit
Prozess zur natürlichen Magnesitkristallisation bei niedrigen Temperaturen
8. September 2018
Das Entweichen von gebundenem Kohlendioxid in die Atmosphäre durch Verbrennen fossiler Energieträger gilt als einer der Hauptgründe für die Veränderung des Weltklimas. Etwa 60 Prozent des vom Menschen verursachten Treibhauseffektes gehen auf Kohlendioxidemissionen zurück. Forscher auf der ganzen Welt sind damit beschäftigt, Möglichkeiten zur Speicherung von freiem Kohlendioxid zu finden. Während frühere Studien die Möglichkeiten zur Einlagerung von umweltschädlichen Gasen in unterirdischen Gesteinsformationen zum Ziel hatten, wird aktuell an der direkten Absorption des Klimagases in Mineralien geforscht.
Reaktion zur Kristallisation auf 72 Tage verkürzt
Bereits vor einigen Jahren hatten niederländische Wissenschaftler herausgefunden, dass das Silikat-Mineral Olivin in der Lage ist Kohlenstoff zu speichern. Nun arbeiten kanadische Forscher im Labor an der Herstellung von Magnesit, das große Mengen des Klimagases aus der Atmosphäre absorbieren soll. So soll je Tonne Magnesit etwa eine halbe Tonne CO2 aus der Umgebung entfernt werden können.
Magnesit (MgCO3) ist ein natürlich vorkommendes Gestein, das beispielsweise als Schmuckstein und für verschiedene industrielle Prozesse Verwendung findet. Die Möglichkeit zur natürlichen Speicherung von Kohlenstoff war den Wissenschaftlern bereits bekannt. Da der Vorgang in der Natur Hunderte bis Tausende von Jahren dauert, wollen die Forscher um Prof. Ian Power an der Trent University in Kanada den Prozess der Kristallisation drastisch beschleunigen.
Erste erfolgversprechende Ergebnisse wurden von den Wissenschaftlern auf der Goldschmidt-Geochemie-Konferenz in Boston vorgestellt. So konnte unter Verwendung von Polystyrol-Mikrokügelchen als Katalysator die Reaktion zur Kristallisation auf 72 Tage verkürzt werden. Den Prozess ließ das Team bei Raumtemperatur ablaufen, um ihn äußerst energieeffizient zu gestalten. Von Experten wurde der Weg zur natürlichen Magnesitkristallisation bei niedrigen Temperaturen als interessante Möglichkeit bewertet, das Kohlendioxidproblem langfristig zu lösen. Allerdings müssen noch zahlreiche Fragestellungen, vor allem Wirtschaftlichkeitsfragen beantwortet werden.
Forschungsbericht unter: www.pubs.acs.org
Bildquelle: Trent University
Biobasierte Folie mit verbesserten Barriereeigenschaften
12. September 2023
In einem Forschungsprojekt ist es gelungen, eine PLA-Folie mit…
Naturfaser-Verbundmaterialien mit Hanf
14. August 2023
FUSE Composite aus Leipzig hat Produktionsverfahren zur Herstellung…
Magnetische Kühlung im industriellen Maßstab
9. August 2023
In dem mit 5 Millionen Euro geförderten EU-Projekt HyLICAL will ein Team um das…
3D-druckbares Quarzglas für Hochleistungsanwendungen
12. April 2023
Die auf den 3D-Druck keramischer Hochpräzisionsbauteile spezialisierte Lithoz…
Motorradhelm mit OLED-Mikrodisplay
19. September 2023
Wissenschaftler am Fraunhofer FEP haben hochauflösende OLED-Mikrodisplays für…
Batterieroboter
14. September 2023
Für die Transformation der Mobilität werden dringend neue Energiespeicher…
Rekordanteil aus erneuerbaren Energien
25. Juli 2023
Mit einem Anteil von 57,7 Prozent an der Nettostromerzeugung zur öffentlichen…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…