
Stärkstes Biomaterial der Welt entwickelt
Stoff aus Zellulose-Nanofasern ist fester als Stahl und Spinnenseide
20. Mai 2018
Schwedische Wissenschaftler berichten von der erfolgreichen Entwicklung des derzeit stärksten Biomaterials der Welt auf Basis von Zellulose-Nanofasern. Am Hamburger Forschungszentrum Desy hat ein Forscherteam um Daniel Söderberg von der Königlichen Technischen Hochschule (KTH) aus Stockholm an der Röntgenlichtquelle Petra III Fäden aus Zellulose-Nanofasern mit außergewöhnlicher mechanischer Festigkeit herstellen können. Das biologisch abbaubare Material übertrifft mit einer Biegesteifigkeit von 86 Gigapascal und einer Zugfestigkeit von 1,57 Gigapascal sogar Stahl und Spinnenseide, die bisher als das stärkste biologische Material galt.
Nur etwa 2 bis 5 Nanometer dünn und bis zu 700 Nanometer lang
Neben den außergewöhnlichen mechanischen Qualitäten überzeugt das Material durch sein geringes Gewicht, was es für zahlreiche Leichtbauanwendungen in der Luftfahrt oder im Automobilbereich als Kunststoffalternative interessant werden lässt. „Unser neues Material hat auch Potenzial für die Biomedizin, da Zellulose vom Körper nicht abgestoßen wird“, erläutert Söderberg. „Unsere Nanozellulosefäden sind achtmal steifer und einige Male zugfester als die Abseilfäden aus natürlicher Spinnenseide.“
Die Forscher nutzten kommerziell angebotene Zellulose-Nanofasern, die nur etwa 2 bis 5 Nanometer dünn und bis zu 700 Nanometer lang sind. Im Prozess wurden Zellulosefasern in Wasser durch einen lediglich ein Millimeter breiten Kanal in einem Stahlblock transportiert. Entionisiertes Wasser und solches mit einem niedrigen pH-Wert wurden hinzugegeben. Das führte dazu, dass sich die Fasern zu einem eng gepackten Faden verbanden, indem sie durch supramolekulare Kräfte aneinanderhafteten. Ein Klebstoff wurde nicht benötigt. Im hellen Röntgenstrahl von PETRA III ließ sich der Prozess im Detail verfolgen und optimieren.
„Wir können jetzt die überragende Leistung aus dem Nanokosmos in den Makrokosmos übertragen“, erklärt Söderberg. „Ermöglicht wurde diese Entdeckung durch die Entschlüsselung fundamentaler Schlüsselparameter für die perfekte Nanostrukturierung wie beispielsweise Partikelgröße, Wechselwirkungen, Ausrichtung, Ausbreitung, Netzwerkbildung und Gruppierung.“ Die Forscher gehen davon aus, dass sich die Produktionskosten des neuen Materials auf das Niveau von besonders festen synthetischen Stoffen bringen lassen. Nach Aussage der Wissenschaftler kann der Prozess in Zukunft auch genutzt werden, um die Gruppierung von Kohlenstoff-Nanoröhrchen oder anderen Nanofasern zu steuern.
Den gesamten Forschungsbericht findet man unter: pubs.acs.org/doi/10.1021/acsnano.8b01084
Bild: Rasterelektronenmikroskop-Aufnahme einer fertigen Faser (Foto: Nitesh Mittal, KTH Stockholm)
Blumensteckschaum aus Schnittblumen
23. April 2023
Die thailändische Designerin Irene Purasachit nutzt weggeworfene Schnittblumen,…
Leichtbau Innovation Awards 2023 Berlin
25. Mai 2023
Am 24. Mai 2023 wurden in Berlin erstmals die Leichtbau Innovation Awards 2023…
Transistor aus Holz
1. Juni 2023
Forscher der Universität Linköping haben zusammen mit Kollegen vom KTH Royal…
3D-druckbares Quarzglas für Hochleistungsanwendungen
12. April 2023
Die auf den 3D-Druck keramischer Hochpräzisionsbauteile spezialisierte Lithoz…
Bessere Luftqualität dank UV-C Technologie
26. Oktober 2022
Fraunhofer Forscher vom IBP haben den Einsatz von UV-C Licht zur Desinfektion…
Xcient Brennstoffzellen-LKW
30. Mai 2023
Seit gut zwei Jahren fahren Brennstoffzellen-LKW der koreanischen Automarke…
Futurecraft Strung Laufschuh
14. März 2021
Beim Futurecraft Strung kombiniert Adidas additive Fertigungsverfahren mit…
Terracotta Solardachziegel
10. Mai 2023
Das Familienunternehmen Dyaqua hat eine Technologie zur Integration eines…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…