
Forming Wood
Dreidimensionaler Verformungsprozess für Hartholz
1. September 2020
Hartholz ist ein sehr wertvolles Holz und wird aus dem inneren Kernholz von Laubbäumen wie Kirschbaum, Wacholder, Eiche, Walnuss oder Teak gewonnen. Es ist äußerst kompakt, besonders haltbar und meist dunkel gefärbt, da die Poren und Gefäße, die ehemals dem Transport von Flüssigkeiten dienten, über die Jahre durch Verthyllung der Gefäße verschlossen wurden. Die große Nachfrage und das langsame Wachstum von Kernholzbäumen lässt das Angebot in den letzten Jahren schrumpfen. Unter dem Namen „Forming Wood“ haben Magnus Mewes und Walter Amrhyn ein neues Verfahren entwickelt, um Massivholz dreidimensional zu verformen und deutlich höhere Verformungsgrade als bei konventionellen Biegevorgängen zu erzielen. Durch die Nachverdichtung kann dabei ein günstigerer Werkstoff verwendet werden.
Verdichten um bis zu 28 Prozent
Das Verfahren basiert unter anderem auf den Mechanismen des Druckdämpfens im Vakuum. Über den Verformungsprozess hinaus wird das Material in einem Arbeitsschritt gepresst und die Materialdichte deutlich erhöht und auf natürlichem Weg eine höhere Dauerhaftigkeit des Werkstoffs erzeugt. Ohne den Einsatz chemischer Hilfsmittel kann auf diese Weise Hartholz um bis zu 28% verdichten. Eine vergleichbare Dichte von Holz ist in der Natur nur durch ein deutlich längeres Wachstum von mehrerer Jahre zu erreichen. Darüber hinaus können im gleichen Arbeitsprozess detaillierte Strukturen in die Oberfläche eingeprägt werden.
Bei konventioneller Verarbeitung ist ein Schwund- und Spannungsabbau von bis zu 70% im Holz möglich, nach der Anwendung des Formingwood-Verfahrens entstehen nur noch rund 30% Materialbewegung. Durch den minimierten Schwund ist bei einem Stuhl eine deutliche Reduzierung von Schmutzfugen zu erwarten. Die geschlossenen Poren reduzieren den Nachbehandlungsaufwand auf ein Minimum, ein Schleifen ist nicht erforderlich. Je nach Verdichtungsfaktor sind weitere positive Eigenschaften wie eine bessere Festigkeit und eine höhere Tragfähigkeit sowie eine stärkere Oberflächenverdichtung zu beobachten. Die Technologie wurde zum Patent angemeldet.
Bildquelle: Magnus Mewes, Walter Amrhyn
Blumensteckschaum aus Schnittblumen
23. April 2023
Die thailändische Designerin Irene Purasachit nutzt weggeworfene Schnittblumen,…
Leichtbau Innovation Awards 2023 Berlin
25. Mai 2023
Am 24. Mai 2023 wurden in Berlin erstmals die Leichtbau Innovation Awards 2023…
Transistor aus Holz
1. Juni 2023
Forscher der Universität Linköping haben zusammen mit Kollegen vom KTH Royal…
3D-druckbares Quarzglas für Hochleistungsanwendungen
12. April 2023
Die auf den 3D-Druck keramischer Hochpräzisionsbauteile spezialisierte Lithoz…
Bessere Luftqualität dank UV-C Technologie
26. Oktober 2022
Fraunhofer Forscher vom IBP haben den Einsatz von UV-C Licht zur Desinfektion…
Xcient Brennstoffzellen-LKW
30. Mai 2023
Seit gut zwei Jahren fahren Brennstoffzellen-LKW der koreanischen Automarke…
Futurecraft Strung Laufschuh
14. März 2021
Beim Futurecraft Strung kombiniert Adidas additive Fertigungsverfahren mit…
Terracotta Solardachziegel
10. Mai 2023
Das Familienunternehmen Dyaqua hat eine Technologie zur Integration eines…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…