
Thermal Energy Harvesting
Thermogeneratoren für autarke Sensoren und Micro-Aktuatoren
2. Februar 2012
Die treibende Kraft funkgestützter Applikationen ist in den meisten Fällen ein Batteriesatz, denn die wesentliche Motivation für die Verwendung der Technologie ist es, auch bei stationären Geräten auf Kabel verzichten zu können. Für viele Anwendungen ist ein gelegentlicher Batteriewechsel ein „no-go“, speziell wenn man an Hunderten oder gar Tausenden Geräten die Batterien regelmäßig tauschen und entsorgen muss. Einen Ausweg aus dieser speziellen „Energiekrise“ bietet die sogenannte Energy-Harvesting-Technologie. Energie Harvesting bezeichnet die Wandlung von Verlust-, Abfall- oder Überschuss-Energie in nutzbare elektrische Energie. Abwärme, Maschinen-Schwingungen, Magnetfelder, oder Licht werden für den Betrieb von ULP-Elektronik nutzbar gemacht.
Vollwertige Alternative zu Batterien
Thermisches Energy-Harvesting, inzwischen auch kurz „Thermoharvesting“ genannt, nutzt eine breit verfügbare „Primär-Energiequelle“: die Abwärme, aus warmen und heißen Prozessen, aus Roll- und Reibbewegungen, aus der Energieerzeugung und -verteilung. Auf diesem Sektor hat das Unternehmen Micropelt seinen Fokus gesetzt. Die Verschmelzung zweier Basistechnologien, der thermoelektrischen Materialwissenschaft einerseits und der massenhaften Chipherstellung andererseits, bilden die Grundlage der Micropelt Chip-Thermogeneratoren (TEG). Micropelt nutzt die bekannte Peltier-Technik, allerdings in stark miniaturisierter Form. Wie herkömmliche Peltier-Elemente bestehen auch die Micropelt-Produkte aus einer Reihenschaltung von gegensätzlich dotierten Halbleiter-Segmenten. Jeweils ein p- und ein n-dotiertes „Klötzchen“ bildet ein so genanntes Thermopaar, das Strom erzeugt, wenn es einem Wärmefluss ausgesetzt wird.
Wann kann ein Thermogenerator eine vollwertige Alternative zu Batterien sein? Als Referenzgröße dient hier die Netto-Energieentnahme eines Systems über die spezifizierte Batterielebensdauer, z.B. auf ein Jahr normiert. Eine Nettobetrachtung ist deswegen wichtig, weil insbesondere bei mehrjähriger Batterie-Lebensdauer die Selbstentladung einen zunehmenden Anteil am Energieverlust der Zelle hat. Sobald der Thermoharvester im Verlauf eines Jahres mindestens die Netto-Energiemenge produziert, die das zu versorgende System verbraucht, ist eine positive Energiebilanz gegeben. Sobald die vom Harvester erzeugte Energie, über alle Schwankungen gemittelt, für den beabsichtigten Zweck ausreicht, ist der Harvester richtig dimensioniert.
Bildquelle: Micropelt
Shellmet – Schutzhelm aus Muschelschalen
3. März 2023
Koushi Chemical Industry hat in Kooperation mit der Universität Osaka den…
Batteriegehäuse aus Naturfaser-Organoblechen
7. Juli 2022
Am Fraunhofer LBF wurden in Kooperation mit der Ansmann AG im Forschungsprojekt…
Räucherrakete mit Formgedächtnislegierung
23. Dezember 2022
Pünktlich zum Weihnachtsfest stellt das Fraunhofer IWU eine Räucherrakete mit…
Hybride Produktion mit additiven Verfahren
7. November 2022
Anlässlich der Formnext 2022 in Frankfurt präsentiert das Fraunhofer IPT die…
Bessere Luftqualität dank UV-C Technologie
26. Oktober 2022
Fraunhofer Forscher vom IBP haben den Einsatz von UV-C Licht zur Desinfektion…
UILA Elektro-Lastenrad
24. November 2022
Anlässlich der formnext hat das Innovationsstudio nFrontier mit Partnern unter…
Futurecraft Strung Laufschuh
14. März 2021
Beim Futurecraft Strung kombiniert Adidas additive Fertigungsverfahren mit…
Dekarbonisierung durch Wasserstoff im Hochofen
28. Februar 2023
thyssenkrupp Steel vergibt Milliardenauftrag für den Bau einer…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…