Poröse Siliziumschichten für leistungsfähigere Lithium-Ionen-Batterien
Silizium als Anodenmaterial erhöht die Energiedichte
8. August 2019

Lithium-Ionen-Akkus sind für die Energie- und Mobilitätswende von großer Bedeutung. Denn sie weisen im Vergleich zu anderen Batterien höhere Energiedichten auf. Daher sind sie zum Beispiel in mobilen Geräten, Uhren und insbesondere im Bereich der Elektromobilität zu finden. Obwohl die Technologie gut entwickelt ist, werden aktuell viele Anstrengungen zur Optimierung der Zellen unternommen. Am Fraunhofer FEP in Dresden haben Forscher in den letzten Jahren einen Produktionsprozess für poröse Siliziumschichten als Anodenmaterial zur Erzielung besonders hoher Energiedichten für Anwendungen in Elektrofahrzeugen entwickelt.
Zink und Silizium werden auf Metallsubstraten abgeschieden
Lithium-Ionen-Batterien bestehen aus einer Anordnung diverser Schichten mit unterschiedlichen Funktionen. So sind Kathode und Anode die beiden Elektroden der Batterie und Elektrolyte die leitfähigen Materialien, die die Pole im Inneren der Zelle miteinander elektrisch verbinden. Um die Eigenschaften der Batterie im Hinblick auf tragbare mobile Geräte und die Elektromobilität weiter zu verbessern, wird derzeit verstärkt an den zur Anwendung kommenden Materialien und den Produktionsprozessen geforscht. Dabei sollen die Batterien nachhaltig und kostengünstig in großer Menge produziert werden können.

Grafik: Aufbau einer Lithium Batterie mit porösem SiliziumGrafik: Aufbau einer Lithium-Ionen-Batterie
Im Projekt PoSiBat wurde ein umweltschonendes Verfahren für die Herstellung von porösen Siliziumschichten als Anodenmaterial entwickelt. Allerdings führen Lade- und Entladevorgang zu einer enormen Ausdehnung bzw. Schrumpfung des Siliziums und daher schnell zu einer mechanischen und elektrochemischen Zerstörung des Materialverbunds und so zum Zellversagen. „Wir haben einen Prozess entwickelt, bei dem zeitgleich Silizium und Zink auf Metallsubstraten abgeschieden werden. Durch eine anschließende Wärmebehandlung verdampft der Zinkanteil aus der Schicht und hinterlässt eine poröse Struktur im Silizium, die Platz für dessen Ausdehnung im Ladeprozess bietet und somit den Kapazitätsverlust minimiert. Durch die Prozessparameter lässt sich die poröse Struktur manipulieren und auf die konkrete Batterieanforderung optimieren. Das Zink lässt sich dabei auffangen und perspektivisch im Prozess wiederverwenden,“ erläutert Dr. Stefan Saager vom Fraunhofer FEP die Ergebnisse der Entwicklung.
Die porösen Siliziumschichten zeigen hinsichtlich ihrer Batterieperformance eine initiale Ladekapazität über 3.000 mAh/gSi und eine vergleichsweite gute Zyklenstabilität. Die Expertise des Fraunhofer FEP liegt in der Beschichtung von Metallsubstraten und -folien mit Zink und Silizium, die mit sehr hohen Beschichtungsraten in herkömmlichen nicht toxischen Vakuumprozessen möglich ist. Diese Prozesse ermöglichen einen hohen Durchsatz und geringe Herstellungskosten. Im Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS wurden die hergestellten Schichten hinsichtlich ihrer elektrochemischen Eigenschaften charakterisiert.
Bilderquelle: Fraunhofer FEP
Shellmet – Schutzhelm aus Muschelschalen
3. März 2023
Koushi Chemical Industry hat in Kooperation mit der Universität Osaka den…
Batteriegehäuse aus Naturfaser-Organoblechen
7. Juli 2022
Am Fraunhofer LBF wurden in Kooperation mit der Ansmann AG im Forschungsprojekt…
Räucherrakete mit Formgedächtnislegierung
23. Dezember 2022
Pünktlich zum Weihnachtsfest stellt das Fraunhofer IWU eine Räucherrakete mit…
Hybride Produktion mit additiven Verfahren
7. November 2022
Anlässlich der Formnext 2022 in Frankfurt präsentiert das Fraunhofer IPT die…
Bessere Luftqualität dank UV-C Technologie
26. Oktober 2022
Fraunhofer Forscher vom IBP haben den Einsatz von UV-C Licht zur Desinfektion…
UILA Elektro-Lastenrad
24. November 2022
Anlässlich der formnext hat das Innovationsstudio nFrontier mit Partnern unter…
Futurecraft Strung Laufschuh
14. März 2021
Beim Futurecraft Strung kombiniert Adidas additive Fertigungsverfahren mit…
Dekarbonisierung durch Wasserstoff im Hochofen
28. Februar 2023
thyssenkrupp Steel vergibt Milliardenauftrag für den Bau einer…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…