
Gedruckte Batterie
Energieversorgung für dünne und flexible Produkte in mobilen Anwendungen
27. September 2016
Gedruckte Batterien ermöglichen Anwendungen mit elektrischen Systemen, die herkömmlichen Energiequellen oftmals verschlossen bleiben. Sie sind mit einer Dicke von weniger als 1 mm biegbar, was sie für Alltagsgegenstände einsatzbar macht. Das von Fraunhofer Forschern entwickelte System basiert auf der Verwendung von Zink-Braunstein und bietet eine Spannung von 1.5 V pro Zelle. Verglichen mit anderen Batteriesystemen, die aggressive Elektrolyte einsetzen, gilt es als umweltfreundlich. Es benötigt keine externen Kontakte zur Konditionierung oder Aufladung, da direkt nach dem Produktionsprozess die elektrische Energie verfügbar ist.
Kurzzeitig sind Stromflüsse von bis zu 100 mA möglich
Bereits bei der Herstellung lassen sich die Batterien miteinander verschalten, was eine hohe Robustheit der Applikation sicherstellt. Ist der benötigte Energiebedarf für die Lebensdauer der Anwendung bestimmt, kann dieser in chemischer Form in den Batterien durch eine entsprechende Formgestaltung gespeichert werden. Damit entfällt die Nachladung und das autarke System ist einsatzfähig. Besonders geeignet sind Produkte mit einer begrenzten Lebensdauer, für die eine Lagerfähigkeit von bis zu einem Jahr vorgesehen ist. Die Wissenschaftler am Fraunhofer ENAS verfolgen beim Einsatz gedruckter Batterien das Ziel, die gesamte Applikation mittels Drucktechnologien herzustellen. Der Vorteil ist dabei, dass ein fertiges Erzeugnis als Halbzeug verwendet werden kann. Dieses ist in sich vollendet und erfordert nicht im Nachhinein einzelne Kontaktierungen, die ihrerseits nur eine begrenzte Zuverlässigkeit haben. Insbesondere durch die Nutzung von Leiterzügen auf Basis von Kohlenstoff ermöglicht die integrierte Herstellung hier eine sehr hohe Betriebssicherheit.
Primäre Zink-Braunsteinzellen speichern auf der aktiven Batteriefläche eine elektrische Energie von 2–5 mAh/cm² bei 1,5 V, gemessen bei Entladeströmen von 200 µA. Eine Erhöhung dieser Ströme hat eine Verringerung der entnehmbaren Energiekapazität, unter anderem durch den Innenwiderstand, zur Folge. Der Innenwiderstand kann durch die parallele Herstellung eines Silber-Leiters signifikant reduziert werden, so dass ein kurzfristiger Stromfluss von mehr als 100 mA erzeugt werden kann. Das Materialsystem ermöglicht durch Serienschaltung die Anpassung der Betriebsspannung. Unter spezifizierten Entladebedingungen wurde bereits eine Spannungsversorgung auf dieser Basis von +/- 15 V realisiert.
Technisches Datenblatt unter: www.enas.fraunhofer.de
Bild: Prototypische Herstellung einer gedruckten Batterie (Quelle: Fraunhofer ENAS)
Shellmet – Schutzhelm aus Muschelschalen
3. März 2023
Koushi Chemical Industry hat in Kooperation mit der Universität Osaka den…
Batteriegehäuse aus Naturfaser-Organoblechen
7. Juli 2022
Am Fraunhofer LBF wurden in Kooperation mit der Ansmann AG im Forschungsprojekt…
Räucherrakete mit Formgedächtnislegierung
23. Dezember 2022
Pünktlich zum Weihnachtsfest stellt das Fraunhofer IWU eine Räucherrakete mit…
Hybride Produktion mit additiven Verfahren
7. November 2022
Anlässlich der Formnext 2022 in Frankfurt präsentiert das Fraunhofer IPT die…
Bessere Luftqualität dank UV-C Technologie
26. Oktober 2022
Fraunhofer Forscher vom IBP haben den Einsatz von UV-C Licht zur Desinfektion…
UILA Elektro-Lastenrad
24. November 2022
Anlässlich der formnext hat das Innovationsstudio nFrontier mit Partnern unter…
Futurecraft Strung Laufschuh
14. März 2021
Beim Futurecraft Strung kombiniert Adidas additive Fertigungsverfahren mit…
Dekarbonisierung durch Wasserstoff im Hochofen
28. Februar 2023
thyssenkrupp Steel vergibt Milliardenauftrag für den Bau einer…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…