
Forming Wood
Dreidimensionaler Verformungsprozess für Hartholz
1. September 2020
Hartholz ist ein sehr wertvolles Holz und wird aus dem inneren Kernholz von Laubbäumen wie Kirschbaum, Wacholder, Eiche, Walnuss oder Teak gewonnen. Es ist äußerst kompakt, besonders haltbar und meist dunkel gefärbt, da die Poren und Gefäße, die ehemals dem Transport von Flüssigkeiten dienten, über die Jahre durch Verthyllung der Gefäße verschlossen wurden. Die große Nachfrage und das langsame Wachstum von Kernholzbäumen lässt das Angebot in den letzten Jahren schrumpfen. Unter dem Namen „Forming Wood“ haben Magnus Mewes und Walter Amrhyn ein neues Verfahren entwickelt, um Massivholz dreidimensional zu verformen und deutlich höhere Verformungsgrade als bei konventionellen Biegevorgängen zu erzielen. Durch die Nachverdichtung kann dabei ein günstigerer Werkstoff verwendet werden.
Verdichten um bis zu 28 Prozent
Das Verfahren basiert unter anderem auf den Mechanismen des Druckdämpfens im Vakuum. Über den Verformungsprozess hinaus wird das Material in einem Arbeitsschritt gepresst und die Materialdichte deutlich erhöht und auf natürlichem Weg eine höhere Dauerhaftigkeit des Werkstoffs erzeugt. Ohne den Einsatz chemischer Hilfsmittel kann auf diese Weise Hartholz um bis zu 28% verdichten. Eine vergleichbare Dichte von Holz ist in der Natur nur durch ein deutlich längeres Wachstum von mehrerer Jahre zu erreichen. Darüber hinaus können im gleichen Arbeitsprozess detaillierte Strukturen in die Oberfläche eingeprägt werden.
Bei konventioneller Verarbeitung ist ein Schwund- und Spannungsabbau von bis zu 70% im Holz möglich, nach der Anwendung des Formingwood-Verfahrens entstehen nur noch rund 30% Materialbewegung. Durch den minimierten Schwund ist bei einem Stuhl eine deutliche Reduzierung von Schmutzfugen zu erwarten. Die geschlossenen Poren reduzieren den Nachbehandlungsaufwand auf ein Minimum, ein Schleifen ist nicht erforderlich. Je nach Verdichtungsfaktor sind weitere positive Eigenschaften wie eine bessere Festigkeit und eine höhere Tragfähigkeit sowie eine stärkere Oberflächenverdichtung zu beobachten. Die Technologie wurde zum Patent angemeldet.
Bildquelle: Magnus Mewes, Walter Amrhyn
Computermaus aus Holz
7. Oktober 2025
Leiterplatten bestehen heute fast ausschließlich aus petrochemischen Rohstoffen…
Snowboard aus Hanf
4. November 2024
Silbaerg hat im Durobast-Projekt ein Snowboard aus Hanffasern und biobasiertem…
Elastokalorik Kühlschrank
27. Oktober 2025
An der Universität des Saarlandes wurde der weltweit erste Kühlschrank…
Leuchte aus drehwüchsigem Holz
15. September 2025
In der Leuchtenserie Eigenwillicht nutzt die Designerin Lisa Schollbach…
Hyperspektrale Bildgebung durch integrierte Interferenzfilter
3. Juli 2025
Für die optischen Sensorik wurde am Fraunhofer IST die hyperspektrale…
Nachhaltigere Reifenproduktion
19. September 2025
Continental forciert den Einsatz nachwachsender und recycelter Rohstoffe in der…
Emotionalität humanoider Roboter
17. Juli 2024
In seiner Masterthesis hat Niko Alber eine Installation eines lebensgroßen…
Gebäude-integrierte Photovoltaik
2. September 2025
Am Fraunhofer FEP wurden im Projekt "Design-Photovoltaik" bedeutende…
Smart Ring
27. Februar 2024
Durch Miniaturisierung von Sensorik und Antenne in einen Ring haben Start-Ups…








