Selbstheilende Materialien unter Einfluss von UV-Licht
Neue Forschungsergebnisse für außergewöhnliche Materialintelligenz
25. April 2011

Autolacke, die Kratzer selber verschließen können, oder Bootsrümpfe, die in der Lage sind, Risse eigenständig zu füllen. Nicht zuletzt beim Flugzeug, in einer sicherheitsrelevanten Anwendung also, werden die Potenziale selbstheilender Materialien zur Verbesserung der Funktionsfähigkeit eines Werkstoffs mehr als offensichtlich.
Selbstheilende Polymerbeschichtung mit eingelagerten Metallionen
Nachdem die Wissenschaft in den letzten Jahren einige sehr erfolgversprechende Lösungen für selbstheilende Systeme präsentiert hat, warten Anfang 2011 zwei Forschergruppen mit Neuerungen auf, deren heilende Wirkung unter Einfluss von UV-Licht ausgelöst wird.
So haben Wissenschaftler aus den USA und der Schweiz eine Polymerbeschichtung mit eingelagerten Metallionen aus Zink oder Lanthan entwickelt. Einfallendes UV-Licht wird von dem metallischen Anteil der so genannten metallosupramolekularen Polymere angezogen.
Die Beschichtung heizt sich infolgedessen binnen 30 Sekunden auf über 200 Grad auf. Es kommt zum Anschmelzen und Verschließen der Kratzer. Auf diese Weise könnten beispielsweise Karosseriebauteile durch lokale Bestrahlung repariert werden, ohne diese auszubauen und aufwändig neu zu lackieren.
Eine amerikanisch-japanische Forschergruppe berichtet von einer anderen Entwicklung, bei der sich erstmals gekappte kovalente Bindungen wiederholt neu miteinander verknüpfen. So kann sich ein Kunststoff ohne Qualitätsverlust permanent erneuern. Die Grundlage bildet eine Trithiocarbonat-Quervernetzung, die aus drei Schwefelatomen und einem Kohlenstoffatom besteht.
Unter Einfluss von UV-Licht strukturiert sich die Gruppe um, eine Kohlenstoff-Schwefel-Bindung wird aufgebrochen. Es entstehen hochreaktive Moleküle mit ungepaarten Elektronen, die wiederum neue Bindungen mit anderen Trithiocarbonat-Gruppen eingehen.
Der beschriebene Effekt der Neuorganisation von Kohlenstoff-Schwefel-Bindungen sei so stark, dass selbst geschredderte Kunststoffproben durch einfaches Zusammenpressen unter UV-Licht wieder zusammenwachsen würden, so die Wissenschaftler.
Forschungsbericht in Nature: www.nature.com/articles/nature09963
Bildquelle: Adolphe Merkle Institute
Snowboard aus Hanf
4. November 2024
Silbaerg hat im Durobast-Projekt ein Snowboard aus Hanffasern und biobasiertem…
Elastokalorik Kühlschrank
27. Oktober 2025
An der Universität des Saarlandes wurde der weltweit erste Kühlschrank…
Leuchte aus drehwüchsigem Holz
15. September 2025
In der Leuchtenserie Eigenwillicht nutzt die Designerin Lisa Schollbach…
Hyperspektrale Bildgebung durch integrierte Interferenzfilter
3. Juli 2025
Für die optischen Sensorik wurde am Fraunhofer IST die hyperspektrale…
Nachhaltigere Reifenproduktion
19. September 2025
Continental forciert den Einsatz nachwachsender und recycelter Rohstoffe in der…
Emotionalität humanoider Roboter
17. Juli 2024
In seiner Masterthesis hat Niko Alber eine Installation eines lebensgroßen…
Gebäude-integrierte Photovoltaik
2. September 2025
Am Fraunhofer FEP wurden im Projekt "Design-Photovoltaik" bedeutende…
Smart Ring
27. Februar 2024
Durch Miniaturisierung von Sensorik und Antenne in einen Ring haben Start-Ups…








