
Glasbauteile aus dem 3D-Drucker
Wissenschaftler entwickeln Drucktinten mit Silika-Partikeln
19. Juni 2017
Am Lawrence Livermore National Laboratory in den USA wurde ein neues Verfahren entwickelt, um transparente Bauteile aus Glas für Optiken oder optische Geräte additiv herstellen zu können.
Druckpasten mit Silika-Partikeln für Glasbauteile
Für den 3D-Druck von so genannter kompositorischer Glasoptik haben die beiden Wissenschaftler Du Nguyen und Rebecca Dylla-Spears breiartige Druckpasten mit Silika-Partikeln entwickelt, die sich als konzentrierte Suspensionen mit steuerbaren Fließeigenschaften bei Raumtemperatur verarbeiten lassen.
Der 3D-Druck von Glas war bislang nur auf Basis von Hochtemperaturprozessen mit Nachteilen in Sachen Präzision und Transparenz möglich. Erfolgreiche Versuche zur Extrusion geschmolzenen Glases bei Temperaturen von über 1.000 °C sind vom MIT aus den USA und dem israelischen Unternehmen Micron3DP bekannt geworden.
Erst kürzlich hat das KIT aus Karlsruhe einen Stereolitographie-Prozess unter Verwendung eines flüssigen Kunstharzes mit feinem Quarzpulver vorgestellt, bei dem Harz in einer sich anschließenden Wärmebehandlung ausgetrieben wird und das Bauteil durch Sintern der Partikel entsteht.
Nachteil der bisherigen Ansätze ist, dass die Glaspartikel nicht vollständig aufgeschmolzen werden und sich daher Spannungen, ungleichmäßige Partikelverteilungen und Porositäten ausbilden. Für Anwendungen in der Optik werden in aller Regel höhere Anforderungen erwartet.
Daher verfolgten die Wissenschaftler am LLNL das Ziel, Druckmaterialien für die Verarbeitung bei Raumtemperatur zu qualifizieren. Dies gelang mit Drucktinten, die aus konzentrierten Suspensionen von Glaspartikeln mit steuerbaren Fließeigenschaften bestehen. Die breiigen Massen konnten im Direct Ink Writing schichtweise aufgetragen werden.
Die entstandenen Druckteile waren zwar zunächst undurchsichtig, jedoch sorgte die Verarbeitung bei Raumtemperatur für die notwendige Detailgenauigkeit. Die Transparenz wurde in einer sich anschließenden Wärmebehandlung erreicht. Die Technik ermöglicht es zudem, Optiken mit unterschiedlichen Brechungsindizes in einer Ebene zu realisieren.
Der vollständige Forschungsbericht wurde veröffentlicht unter: www.llnl.gov
Bildquelle: Lawrence Livermore National Laboratory
Shellmet – Schutzhelm aus Muschelschalen
3. März 2023
Koushi Chemical Industry hat in Kooperation mit der Universität Osaka den…
Batteriegehäuse aus Naturfaser-Organoblechen
7. Juli 2022
Am Fraunhofer LBF wurden in Kooperation mit der Ansmann AG im Forschungsprojekt…
Räucherrakete mit Formgedächtnislegierung
23. Dezember 2022
Pünktlich zum Weihnachtsfest stellt das Fraunhofer IWU eine Räucherrakete mit…
Hybride Produktion mit additiven Verfahren
7. November 2022
Anlässlich der Formnext 2022 in Frankfurt präsentiert das Fraunhofer IPT die…
Bessere Luftqualität dank UV-C Technologie
26. Oktober 2022
Fraunhofer Forscher vom IBP haben den Einsatz von UV-C Licht zur Desinfektion…
UILA Elektro-Lastenrad
24. November 2022
Anlässlich der formnext hat das Innovationsstudio nFrontier mit Partnern unter…
Futurecraft Strung Laufschuh
14. März 2021
Beim Futurecraft Strung kombiniert Adidas additive Fertigungsverfahren mit…
Dekarbonisierung durch Wasserstoff im Hochofen
28. Februar 2023
thyssenkrupp Steel vergibt Milliardenauftrag für den Bau einer…
Ultra-low power OLED Mikrodisplays
23. Februar 2023
Am Fraunhofer FEP wurde ein Testboard zur Bestückung mit bis zu 64…